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Recently an interesting new class of PDE integrators, multisymplectic schemes,
has been introduced for solving systems possessing a certain multisymplectic struc-
ture. Some of the characteristic features of the method are its local nature (independent
of boundary conditions) and an equal treatment of spatial and temporal variables.
The nonlinear Schr¨odinger equation (NLS) has a multisymplectic formulation, and
in this paper we discuss the performance of both symplectic and multisymplectic
integrators for the NLS. In the numerical experiments, the multisymplectic concate-
nated midpoint scheme (a centered cell discretization) is shown to preserve the local
conservation laws extremely well over long times and to preserve global invariants
such as the norm and momentum within roundoff. On the other hand, an integrable
Hamiltonian semi-discretization of NLS from Ablowitz and Ladik (AL) possesses
a full set of global conservation laws and a noncanonical symplectic structure. We
generalize the generating function technique to develop symplectic integrators of
arbitrary order for a general class of noncanonical systems carrying a symplectic
structure of the AL type. Another approach examined in the paper is the introduc-
tion of transformations to reduce the AL system to either (1) separable form or (2)
canonical form and then apply standard schemes in the new coordinates. All of the
discretizations are tested numerically using initial data for spatially periodic mul-
tiphase solutions. The performance of the schemes as well as interrelations among
various geometric features are discussed.c© 2001 Academic Press

Key Words: symplectic integrators; multisymplectic integrators; nonlinear
Schrödinger equation; nonlinear wave equations.

1. INTRODUCTION

Numerical schemes which preserve the geometric features of the system under study
have become very popular. In particular, symplectic schemes which are designed to preserve
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the symplectic structure of canonical Hamiltonian ODEs have demonstrated a remarkable
ability to preserve the phase space geometry for very long times. In the low-dimensional
case, symplectic discretizations conserve the integrals of motion of the original system
extremely well. However, systems with a noncanonical symplectic structure have remained
largely unexamined, with a few exceptions such as the linearLie–Poissoncase and the
Ablowitz–Ladik discrete nonlinear Schrodinger equation [22]. The reason for this is partly
the fact that any nondegenerate symplectic structure can be reduced to the canonical one
via a suitable local coordinate transformation (Darboux’s Theorem) [5]. The numerical
practicality of such transformations for integration of noncanonical systems remains an
open question. While symplectic discretizations that directly preserve the noncanonical
structure can be derived (as shown in Section 4), they typically are highly nonlinear and
implicit and thus computationally expensive in comparison to traditional schemes.

In a broader context, an important question which is actively under study is how to ap-
propriately generalize symplectic integrators to a Hamiltonian PDE framework, i.e. what
are the relevant geometric features for a PDE integrator to preserve. One long standing
approach to this problem (which has met with varying degrees of success) has been to in-
troduce a Hamiltonian semi-discretization of the PDE using, for example, spectral methods
or finite differencing and then applying a symplectic scheme to integrate the semi-discrete
system in time; see e.g. [4, 10, 12, 14, 16, 23]. The resulting numerical schemes preserve the
symplectic structure of the semi-discretization but as the level of discretization is refined
or the dimension of the system is increased, the advantage obtained using the symplectic
integrator can occur only on a long enough timescale (see the numerical experiments in
Section 5.1). Another problem with this method is its nonlocality as the system is defined
on a particular phase space which enforces a specific type of boundary condition. Yet often
local features of solutions or even existence and properties of a particular class of solutions
(e.g., spatial and/or temporal (quasi)periodicity) are of interest.

An alternate generalization to the PDE framework involves a local concept of symplec-
ticity and the introduction of “multisymplectic integrators” [6, 7, 15]. Bridges and Reich
[7] consider PDEs with the following geometrical structure (for convenience we restrict to
the “1+ 1” case of one spatial and one temporal dimensions): LetM andK beanyskew–
symmetric matrices onRn×n(n ≥ 3) and letS:Rn 7→ R beanysmooth function. Then, a
system of the following form

Mzt + Kzx =∇zS(z), z∈ Rn, (1)

(the gradient∇z is defined with respect to the standard inner product onRn) is called a
Hamiltonian system on a multisymplectic structureor, in brief, a multisymplectic PDE.

The term multisymplectic is applied to system (1) in the following sense. Associated
with M andK are the two forms

ω(U,V)=〈MU,V〉=VTMU and κ(U,V)=〈KU,V〉=VTKU, U,V ∈ Rn, (2)

whereω defines a symplectic structure onRm (m= rankM ≤ n) associated with the time
direction, andκ defines a symplectic structure onRk (k = rankK ≤ n) associated with
the x-direction. An important aspect of a multisymplectic structure is that it admits a
multisymplectic conservation law. Specifically, letU,V ∈ Rn be any two solutions of the
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variational equation associated with (1),

Mdzt + Kdzx = DzzS(z)dz. (3)

Then

∂tω = 〈MUt ,V〉 + 〈MU,Vt 〉
∂xκ = 〈KUx,V〉 + 〈KU,Vx〉 (4)

and noting thatDzzS(z) is a symmetric matrix, one obtains the multisymplectic conservation
law

∂tω + ∂xκ = 〈MUt + KUx,V〉 − 〈U,MVt + K Vx〉
= 〈DzzS(z)U,V − 〈U,DzzS(z)V〉
= 0. (5)

Using wedge product notation, (5) is equivalent to

∂t [dz∧Mdz] + ∂x[dz∧ Kdz] = 0. (6)

Multisymplectic integrators are approximations to (1) which conserve a discretization of
the multisymplectic conservation law (5). Many analogies exist between symplectic and
multisymplectic structures; likewise between the properties of symplectic and multisym-
plectic integrators. Conservation of multisymplecticity (5) is analogous to preservation of
the two-form,ωt = 0, for Hamiltonian ODEs. In fact, let

z= (p1, . . . , pN,q1, . . . ,qN), M ≡ J =
(

0 −I N

I N 0

)
,

where allpj , qj are spatially independent, then∂xdz≡ 0 leads to∂xκ = ∂x[dz∧ Kdz] ≡ 0
and (6) reduces to

ωt = ∂[dz∧ Jdz] = dp∧ dq= 0,

recovering the familiar notion of preservation of the canonical symplectic structure by
the phase flow. As symplectic integrators are discretizations preserving the two-formω,
multisymplectic integrators are approximations to (1) which also conserve a discretization
of the multisymplectic conservation law (5). Similarly, just as symplectic schemes conserve
the Hamiltonian extremely well over very long times, multisymplectic schemes conserve the
related energy and momentum conservation laws very well (see the results in Section 5.1).

Many integrable Hamiltonian PDEs (e.g., the sine-Gordon (SG) and NLS equations) can
be expressed in a multisymplectic form. Earlier numerical studies of the NLS and SG equa-
tions [2, 4, 18] showed that the manner in which the PDE is spatially discretized is of prime
importance for accurate resolution of the qualitative features of the system. For example,
for initial values in the vicinity of homoclinic orbits, standard Hamiltonian discretizations
may completely break down and generate spurious temporally chaotic solutions [18]. In this
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paper, we examine the advantages of using geometric integrators to preserve the essential
geometric features of the nonlinear Schr¨odinger (NLS) system

iqt + qxx + 2q2 p = 0

−i pt + pxx + 2p2q = 0 (7)

when periodic boundary conditions(q(x + L , t), p(x + L , t)) = (q(x, t), p(x, t)) are im-
posed. Specifically, for the integrable case(p = q∗) we consider multisymplectic schemes
as well as integrable spatial discretizations with symplectic integrators in time-integrable
symplectic schemes.

To derive discretizations preserving the multisymplectic structure of NLS we employ the
Gauss–Legendre (G–L) family of schemes, which is suitable for integration of nonlinear
wave equations. These integrators were introduced and carefully implemented for the sine-
Gordon equation in [20]. Here we apply the second-order member of the family to NLS
and examine the preservation of the local and global conservation laws. As the numerical
experiments demonstrate, multisymplectic methods have much to offer. For instance, the
local and global energy are preserved far better than expected given the order of the scheme.
In addition, the scheme is faster than other second-order geometric integrators examined in
the paper and preserves the conjugacy relation between complex coordinates(p = q∗).

Perhaps even more important than the multisymplectic structure is the integrable structure
associated with NLS, so it is natural to consider discretizations preserving it. An interesting
feature of the NLS is that its integrable semi-discretization, the Ablowitz–Ladik (AL) system
(Eq. (37)), possesses a highly nontrivial noncanonical symplectic structure, even though
the continuous system is canonical. The most general approach for developing symplectic
discretizations for noncanonical Hamiltonian systems is to use the generating function
technique. This method has been used for canonical Hamiltonian systems by many authors
(e.g., [8, 21]). In [22] we extended the technique to generate a second-order scheme for the
AL system. Here the algorithm is generalized to develop symplectic integrators of arbitrary
order for a general class of noncanonical systems carrying a symplectic structure of the AL
type. We implement the second-order member of the resulting family and test it numerically.
The experiments show however, that the conjugacy relation (p= q∗) is not preserved by
the discrete flow. In fact, enforcing it as a separate constraint results in degradation of
preservation of the constants of motion.

An alternate approach to preserving the symplectic structure is to transform the system
into a form for which standard symplectic integrators can be applied. We introduce two such
transformations. One transformation yields a noncanonical Hamiltonian system for which
splitting methods can be applied. The second transformation, a Darboux transformation,
reduces the AL symplectic structure to canonical form. We initiate a comparison between
the various symplectic schemes for the AL system in canonical and noncanical form. We
stress the applicability and potential usefulness of the generating function approach for
general noncanonical Hamiltonian systems. The numerical experiments indicate that the
generating function scheme is more efficient than the standard symplectic schemes applied
to the transformed systems. In fact, such transformations appear to introduce additional
complexity into the form of the equations that poses difficulty even for an efficient algo-
rithm such as the implicit midpoint scheme. This demonstrates the difficulties in finding an
optimal transform and that it can be more efficient to integrate the AL system in its original
noncanonical form.
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The rest of the paper is organized as follows. The Hamiltonian and multisymplectic struc-
ture of NLS is developed in Section 2. Next, in Section 3, the multisymplectic centered cell
discretization, which arises by concatenating two second-order members of the G–L family,
is applied to the NLS and its properties are discussed. In particular we find that for the NLS
the multisymplectic scheme is actually symplectic in time in the traditional sense (the details
are provided in the Appendix). In Section 4 we present the AL integrable discretization of
the NLS in canonical and noncanonical form and develop several symplectic schemes for
the AL system. Numerical experiments and their results are discussed in Section 5, where
we compare the performance of the various integrators. In Section 6 we conclude the paper
with a brief discussion of the relative merits of the various geometric integrators.

2. Hamiltonian and Multisymplectic Structure of the NLS Equation

In modeling a variety of physically significant nonlinear phenomena, the conditionp =
±q∗ is frequently imposed in (7) and in this case the system reduces to the standard cubic
nonlinear Schr¨odinger equation (NLS)

i ∂tq + ∂xxq + 2|q|2q = 0. (8)

The NLS equation is a completely integrable system in the sense of the inverse scattering
transform (IST) and can be written as an infinite dimensional Hamiltonian system onH1

per

when periodic boundary conditions,q(x + L , t) = q(x, t), are imposed

∂t

(
q∗

q

)
= J
(
δH/δq∗

δH/δq

)
, (9)

with J = (0 −1
1 0 ) and Hamiltonian

H(q∗,q) = i
∫ L

0
(|q|4− |qx|2) dx. (10)

The symplectic form for the NLS is given by

ω =
∫ L

0

(
dp

dq

)T

J−1

(
dp

dq

)
dx =

∫ L

0
(dp∧ dq) dx. (11)

Alternately, the NLS can be viewed as a multisymplectic Hamiltonian PDE of type (1).
Lettingq = a− ib, the NLS can be rewritten as a pair of real-valued equations

∂ta = ∂xxb+ 2(a2+ b2)b,
(12)

∂t b = −∂xxa− 2(a2+ b2)a.

Introducing the pair of conjugate momentav = ax, w = bx, system (11) has a multisym-
plectic formulation [20]

Mzt + Kzx =∇zS(z), (13)
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with

M =


0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 , K =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 , z= [a, b, v, w]T

and Hamiltonian

S(z) = 1

2
(v2+ w2+ (a2+ b2)2),

i.e.,

−∂t b− ∂xv = 2(a2+ b2)a,

∂ta− ∂xw = 2(a2+ b2)b,
(14)

∂xa = v,
∂xb = w.

The multisymplectic conservation law (6) for the NLS is then given by

∂t [da ∧ db] + ∂x[da ∧ dv + db∧ dw] = 0. (15)

2.1. Local Conservation Laws

One consequence of multisymplecticity is that when the HamiltonianS(z) is independent
of x and t , each independent variable gives rise to a conservation law [6]. Conservation
of energy and momentum are associated with translation invariance in time and space, re-
spectively. It is easy to show that multiplying (1) withzT

t from the left provides the energy
conservation law (ECL)

∂t E(z)+ ∂x F(z) = 0, (16)

while multiplying (1) withzT
x from the left yields the momentum conservation law (MCL)

∂t I (z)+ ∂xG(z) = 0, (17)

where

E(z) = S(z)− 1

2
κ(zx, z), F(z) = 1

2
κ(zt , z),

(18)

G(z) = S(z)− 1

2
ω(zt , z), I (z) = 1

2
ω(zx, z),

andκ andω are defined in (2). Note thatS(z) itself is not preserved. Implementing re-
lations (16) and (17) for the NLS, one obtains the following energy conservation law
(ECL)

∂t

[
1

2
((a2+ b2)2− v2− w2)

]
+ ∂x(vat + wbt ) = 0 (19)
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and momentum conservation law (MCL)

∂t

[
1

2
(aw − vb)

]
+ ∂x

[
1

2
((a2+ b2)2+ v2+ w2− (abt − atb)

]
= 0, (20)

respectively. Another conservation law, which we call the norm conservation law for the
reason given below, is given by

∂t

[
1

2
(a2+ b2)

]
+ ∂x(bv − aw) = 0. (21)

These three equations, when integrated with respect to x, yield the classic global conserva-
tion of energy (Hamiltonian), momentum, and norm.

3. A MULTISYMPLECTIC SCHEME FOR THE NLS

In a similar spirit to the preservation of the symplectic 2-form by symplectic integrators,
multisymplectic integrators are designed to preserve a discrete multisymplectic conservation
law. As the multisymplectic structure of PDEs and the use of multisymplectic integrators
have only very recently been explored, we provide the following definition from [7]:

Let the discretization of the multisymplectic PDE (1) and the conservation law of multi-
symplecticity be written schematically as

M∂ i, j
t zj

i + K∂ i, j
x zj

i =
(
∇zS

(
zj
i

)) j

i , (22)

and

∂
i, j
t ω

j
i + ∂ i, j

x κ
j

i = 0, (23)

respectively, wherezj
i = z(xi , t j ), ∂

i, j
t , and∂ i, j

x are discretizations of the corresponding
derivatives∂t and∂x,

ω
j
i =

〈
MU j

i ,V j
i

〉
and κ

j
i =

〈
KU j

i ,V j
i

〉
, (24)

and

{
U j

i

}
(i, j )∈Z×Z,

{
V j

i

}
(i, j )∈Z×Z

are two solutions of thediscrete variational equations

M∂ i, j
t dzj

i + K∂ i, j
x dzj

i = Di, j
zz S
(
zj
i

)
dzj

i .

DEFINITION 3.1. The numerical scheme (22) is called a multisymplectic integrator if
(23) is a discrete conservation law for (22).
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3.1. The Multisymplectic Concatenated Midpoint Rule

Multisymplectic PDEs have a symplectic structure associated with each of the temporal
and spatial variables. Thus, a natural starting point for developing multisymplectic schemes
is to examine schemes which are known to be symplectic in the traditional sense. One pos-
sibility is to concatenate a pair of implicit midpoint discretizations (the simplest symplectic
scheme in the Gauss–Legendre family), one in thex-direction and one in the t-direction
[7, 20].

Concatenating the two implicit midpoint discretizations (in either order), one obtains the
following centered cell discretization of (1)

M

zj+1
i+ 1

2
− zj

i+ 1
2

1t

+ K

z
j+ 1

2
i+1 − z

j+ 1
2

i

1x

 =∇zS
(

z
j+ 1

2

i+ 1
2

)
, (25)

where

zj
i+ 1

2
= 1

2

(
zj
i + zj

i+1

)
, z

j+ 1
2

i = 1

2

(
zj
i + zj+1

i

)
and

z
j+ 1

2

i+ 1
2
= 1

4

(
zj
i + zj

i+1+ zj+1
i + zj+1

i+1

)
.

The centered cell discretization is multisymplectic for any PDE which possesses the mul-
tisymplectic formulation (1), i.e., in each cell the discretization satisfiesω j+1

i+ 1
2
− ω j

i+ 1
2

1t

+
κ j+ 1

2
i+1 − κ

j+ 1
2

i

1x

 = 0 (26)

exactly, whereω j
i andκ j

i are given by (24) [7].
Applying the centered cell discretization to (14), we obtain the following multisymplectic

scheme for NLS:

bj+1
i+1/2− bj

i+1/2

1t
− v

j+1/2
i+1 − v j+1/2

i

1x
= 2
((

a j+1/2
i+1/2

)2+ (bj+1/2
i+1/2

)2
)

a j+1/2
i+1/2 ,

a j+1
i+1/2− a j

i+1/2

1t
− w

j+1/2
i+1 − w j+1/2

i

1x
= 2
((

a j+1/2
i+1/2

)2+ (bj+1/2
i+1/2

)2
)

bj+1/2
i+1/2 , (27)

a j+1/2
i+1 − a j+1/2

i

1x
= v j+1/2

i+1/2 ,
bj+1/2

i+1 − bj+1/2
i

1x
= w j+1/2

i+1/2 ,

where the following notation has been used (as above in (25))

f j
i+1/2 =

1

2

(
f j
i+1+ f j

i

)
, f j+1/2

i = 1

2

(
f j+1
i + f j

i

)
,

f j+1/2
i+1/2 =

1

4

(
f j+1
i+1 + f j+1

i + f j
i+1+ f j

i

)
.
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For NLS, the corresponding discretization of the multisymplectic conservation law (15)
is

daj+1
i+1/2 ∧ dbj+1

i+1/2− daj
i+1/2 ∧ dbj

i+1/2

1t
+ daj+1/2

i+1 ∧ dv j+1/2
i+1 + dbj+1/2

i+1 ∧ dw j+1/2
i+1

1x

− daj+1/2
i ∧ dv j+1/2

i − dbj+1/2
i ∧ dw j+1/2

i

1x
= 0. (28)

Scheme (27), which we denote by MS in the numerical experiments, is second order in
space and time. Higher order multisymplectic schemes can be obtained by concatenating
higher order members in the Gauss–Legendre family [20]. For completeness, the proof that
a concatenated pair of s and r stage (G–L) methods yields a multisymplectic integrator for
the NLS equation is provided in the Appendix (Proposition 1). An interesting property of
the Gauss–Legendre multisymplectic integrators, when periodic boundary conditions are
imposed, is the following

PROPOSITION3.1. Let (14) be discretized in space and in time by a pair of Gauss–
Legendre collocation methods with s and r stages, respectively. The resulting discretization
is a multisymplectic integrator for the NLS equation. Further, when periodic boundary
conditions are imposed the discretization(in particular MS) yields a finite dimensional
Hamiltonian truncation of the NLS equation in space with the underlying symplectic struc-
tureda∧ Bdb and a symplectic discretization of this finite-dimensional system in time.(See
the proof in the Appendix as multisymplectic schemes are not automatically symplectic in
the traditional sense.)

3.2. Discrete Conservation Laws

Applying the centered cell discretization to (16), the corresponding discrete energy con-
servation law is

E j+1
i+1/2− E j

i+1/2

1t
+ F j+1/2

i+1 − F j+1/2
i

1x
= 0, (29)

where

E j
i+1/2 =

1

2

[((
a j

i+1/2

)2+ (bj
i+1/2

)2
)2
−
((
v

j
i+1/2

)2+ (w j
i+1/2

)2
)]

(30)

F j+1/2
i = v j+1/2

i

(
a j+1

i − a j
i

1t

)
+ w j+1/2

i

(
bj+1

i − bj
i

1t

)
.

The discrete momentum conservation law takes the form

I j+1
i+1/2− I j

i+1/2

1t
+ G j+1/2

i+1 − G j+1/2
i

1x
= 0, (31)

where

I j
i+1/2 =

1

2

(
a j

i+1/2w
j
i+1/2− bj

i+1/2v
j
i+1/2

)
(32)
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G j+1/2
i = 1

2

[((
aj+1/2

i

)2+ (bj+1/2
i

)2)2+ (v j+1/2
i

)2+ (w j+1/2
i

)2

−
(

aj+1/2
i

(
bj+1

i − bj
i

1t

)
− bj+1/2

i

(
aj+1

i − a j
i

1t

))]
. (33)

A discrete version of Eq. (21) is given by

N j+1
i+1/2− N j

i+1/2

1t
+ M j+1/2

i+1 − M j+1/2
i

1x
= 0, (34)

where

N j
i+1/2 =

1

2

((
aj

i+1/2

)2+ (bj
i+1/2

)2)
M j+1/2

i = bj+1/2
i v

j+1/2
i − a j+1/2

i w
j+1/2
i . (35)

Reich has shown that multisymplectic Gauss–Legendre schemes preserve both the dis-
crete energy and momentum conservation laws exactly for linear Hamiltonian PDEs (analo-
gous to symplectic Gauss-Legendre schemes preserving the Hamiltonian exactly for linear
Hamiltonian ODEs). In the present situation, the local conservation of energy and momen-
tum will not be exact for the NLS using (27) sinceS(z) is not quadratic. However the
numerical experiments show that the local conservation laws (19) and (20) are preserved
very well over long times.

Integrating the densitiesE(z), I (z), and N(z) over the spatial domain (with periodic
boundary conditions) leads to the global conserved quantities

d

dt
E(z) = 0,

d

dt
I(z) = 0, and

d

dt
N (z) = 0, (36)

whereE(z) = ∫ L
0 E(z) dx, I(z) = ∫ L

0 I (z) dx, andN (z) = ∫ L
0 N(z) dx. In the numeri-

cal experiments we monitor both the local and global conservation of energy, momentum,
and the norm and find that the global momentum and norm are preserved within roundoff.
This substantiates that global conservation properties are weaker conditions, i.e., that global
conservation of e.g., energy or momentum (36) is a necessary but not sufficient condition
for local conservation of energy or momentum (16) and (17). For a further discussion of
global versus local conservation properties, see [20].

4. SYMPLECTIC INTEGRATORS FOR THE ABLOWITZ–LADIK

DISCRETE NLS SYSTEM

Apart from multisymplectic discretizations, we consider spatial semi-discretizations of
NLS that are Hamiltonian with respect to a symplectic structure that is a discrete version
of (11) and derive symplectic time integrators for them. The Ablowitz–Ladik (AL) discrete
NLS is an obvious choice as it is a completely integrable Hamiltonian system for all N (the
discretization parameter) when the conjugacy conditionpn = ±q∗n is imposed [1].
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4.1. The Ablowitz–Ladik System

The Ablowitz–Ladik discrete NLS system

i
d

dt
qn + qn−1+ qn+1− 2qn

h2
+ pnqn(qn−1+ qn+1) = 0

(37)

−i
d

dt
pn + pn−1+ pn+1− 2pn

h2
+ pnqn(pn−1+ pn+1) = 0,

has a noncanonical Hamiltonian form

ż= P(z)∇H(z), (38)

wherez= ( p, q) = (p1, . . . , pN,q1, . . . ,qN) andp= u∗, q= u are the conjugate vari-
ables. The Hamiltonian is given by

H = i

h3

N∑
n=1

[h2 pn(qn−1+ qn+1)− 2 ln(1+ h2qn pn)], (39)

where the Poisson bracket tensorP(z) is a 2N × 2N skew-symmetric matrix

P(z) =
(

0 −R
R 0

)
, R= diag[r1, . . . , r N ], rn = 1+ h2qn pn

h
, (40)

so that the fundamental Poisson brackets are given in coordinates (p, q) by

{pm,qn} = −rnδm,n, {pm, pn} = {qm,qn} = 0. (41)

The phase space of any Hamiltonian system with a nondegenerate bracket carries a natural
symplectic structure. For the AL system (37), the symplectic 2-form is given by

ω( p, q) =
N∑

n=1

h

1+ h2qn pn
dpn ∧ dqn. (42)

In the continuum limith→ 0 with pn = q∗n the HamiltonianH and the nonstandard Poisson
bracket{,} for the AL system approach the Hamiltonian and the standard Poisson bracket,
respectively, for the NLS PDE, and the form (42) reduces to the continuous form (11). The
AL system inherits all the properties of the original PDE system, and it is possible to derive
the N-soliton solution for rapidly decreasing whole-line boundary conditions, as well as
quasi-periodic Riemann theta function solutions for periodic boundary conditions [1, 19].

As mentioned above, the AL system carries on its phase space a noncanonical symplec-
tic structure, for which standard symplectic integrators are not immediately applicable. For
example, symplectic implicit Runge–Kutta schemes for AL (38) do not exist. We explore
several methods for obtaining symplectic schemes for the discrete AL system: (1) we intro-
duce a time dependent coordinate transformation which yields a noncanonical Hamiltonian
for which splitting methods can be applied (2) using an additional transformation we re-
duce the symplectic structure to canonical form and apply standard symplectic schemes and
(3) via the generating function method, we develop integrators that preserve the original
noncanonical structure (38).
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4.2. A Separable Form of the Ablowitz–Ladik System

Under the time-dependent unitary transformationun 7→ (an + ibn)e−2i t /h2
, the AL sys-

tem is transformed into another noncanonical Hamiltonian system inreal coordinates (a, b)
[24]. Lettingwn(t) = un(t)e2i t /h2

, then the new equations of motion are

ẇn = i (wn−1+ wn+1)

(
1

h2
+ |wn|2

)
. (43)

We remark that the equations of motion in this form do not have a well-defined limit as
h→ 0 since the phase of the right-hand side is then undefined. Scaling of time is necessary
to regularize the limit, which is equivalent to a transformation to a system of the original
AL form.

Separatingwn = an + ibn into real and imaginary parts, we obtain the following equa-
tions of motion in the new real coordinates

ȧn = −cn(bn+1+ bn−1), ḃn = cn(an+1+ an−1), cn = 1+ h2
(
a2

n + b2
n

)
. (44)

These can be cast as a noncanonical Hamiltonian system

Ż = K(Z)∇H(Z), (45)

whereZ = [aT , bT
]T
, a= [a1, . . . ,aN ]T , b = [b1, . . . ,bN ]T ,

K(Z) =
(

0 −S
S 0

)
with S= diag[s1, . . . , sN ], andsn = 1+ h2(a2

n + b2
n) and

H = 1

h2

N∑
n=1

[anan+1+ bnbn+1]. (46)

Denoting the right-hand side of (45) by the vector fieldV(Z), we write the system in the
form

Ż = V(Z). (47)

A symplectic method for the integration of (47) can be obtained based on the following
splitting of V : the vector fieldV separates into the sum of theA-field

ȧn = −
(
1+ h2

(
a2

n + b2
n

))
(bn+1+ bn−1), ḃn = 0, (48)

and theB-field

ȧn = 0, ḃn =
(
1+ h2

(
a2

n + b2
n

))
(an+1+ an−1). (49)

Both systems are Hamiltonian with respect to the same Poisson bracket as (45) and the
corresponding Hamiltonians are given by

HA(Z) = 1

h2

N∑
n=1

anan+1, HB(Z) = 1

h2

N∑
n=1

bnbn+1.
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Both systems can be trivially integrated. We consider theA-system (48) first and let

B̄n = bn−1+ bn+1, B2
n =

(
1

h2
+ b2

n

)
, An = an.

Then

d An

dt
= −B̄n

(
B2

n + A2
n

)
, B̄n = const, B̄n = const,

which is easily integrated in the form

An(t) = Bn

An(0)
Bn
− tan(BnB̄nt)

1+ An(0)
Bn

tan(BnB̄nt)
.

The B-system (49) is similarly integrated as (with the obvious changes in notation)

Bn(t) = An

Bn(0)
An
+ tan(An Ānt)

1− Bn(0)
An

tan(An Ānt)
.

We denote the correspondingsymplecticflow by exp At and expBt. To approximate the
flow corresponding toV we can use the Baker–Campbell–Hausdorff formula to expand
exp(t A+ t B) in terms of compositions of expt A and expt B, and match the terms up to
the given order int . Additional constraints have to be placed on the expansion coefficients
to ensure that the compound flow is symplectic as well. This is done systematically in [17];
we use a well-known second-order symplecticleapfrog methodthat defines a symplectic
approximationZ̄(t) to exptV as

Z̄(t) =
(

exp
1

2
t A

)
(expt B)

(
exp

1

2
t A

)
. (50)

We denote this integrator by LF.

4.3. The Ablowitz–Ladik System in Canonical Form

In general, any nondegenerate symplectic form can be reduced to the canonical one using
a suitable local coordinate transformation. These transformations are not unique since any
Darboux transform followed by a symplectic map reduces the system to canonical form. In
particular, we consider such transformations for the AL system and upon reduction apply
standard symplectic integrators.

We begin with the transformed noncanonical Hamiltonian system (45). Next, standard-
ization of the symplectic structure is accomplished using the Darboux transformation
(a, b) 7→ (c, d) given by

an = 1

h

√
1+ h2d2

n tan

(
h
√

1+ h2d2
ncn

)
.

bn = dn.

The AL system can then be rewritten in the canonical form (denoted by the c-AL system)

Ẏ = J∇H(Y), (51)
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whereY = [cT , dT ]T , c= [c1, . . . , cN ]T , d = [d1, . . . ,dN ]T ,

J =
(

0 −I
I 0

)
,

with I being the identity matrix and

H(c, d) = 1

h2

N∑
n=1

[
1

h

√
1+ h2d2

n tan

(
h
√

1+ h2d2
ncn

)

× 1

h

√
1+ h2d2

n+1 tan

(
h
√

1+ h2d2
n+1cn+1

)
+ dndn+1. (52)

The c-AL system can then be discretized in time using standard symplectic schemes such
as the second-order implicit midpoint rule (see Section 4.5), and we denote this integrator
as CS2.

4.4. Symplectic Schemes for the Noncanonical AL System

An alternate approach to standardization of the symplectic structure is to construct integra-
tors that directly preserve the noncanonical form (42). Since the form (42) is not of potential
type, Hamilton–Jacobi theory does not apply. Thus, the most appropriate approach to de-
riving symplectic integrators for the AL system is based on generating functions [11, 22].
In this section, the method is generalized to generate symplectic integrators of arbitrary
order for general noncanonical systems carrying a symplectic structure of the AL type.

We consider symplectic structures given by 2-forms of the type

ω(p, q) =
N∑

n=1

ωn(pn,qn)dpn ∧ dqn,

whereωn(pn,qn) is a function of(pn,qn) only. This is perhaps the simplest form of a
noncanonical symplectic structure; the standard form is recovered from this expression by
settingωn ≡ 1. For the AL system,ωn = −r−1

n . The Poisson bracket dual toω has the
fundamental brackets.

{pm,qn} = −δm,n,rn = −δm,nω
−1
n , {pm, pn} = {qm,qn} = 0.

and the equations of motion generated by a Hamiltonian functionH(p, q) relative to this
bracket have the form

ṗn = −rn
∂H

∂qn
, q̇n = rn

∂H

∂pn
. (53)

A transformation (p, q)→ (P,Q) is called symplectic with respect toω if

ω(p, q) = ω(P,Q). (54)

Sinceω is closed, it is exact, at least locally, and there exists a local primitive 1-formθ ,
such thatω = dθ . The primitive is not unique since for any smooth functionF the form
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θ ′ = θ + d F is also a (local) primitive forω. One suchθ can be obtained by integratingω
with respect top along any path in a simply connected neighborhood of (p, q) as follows

θ(p, q) = fdq=
N∑

n=1

fn(pn,qn) dqn, fn(Pn, Qn) =
∫ Pn

pn

ωn(ξ, Qn) dξ.

Likewise, integrating with respect toq obtains another primitive

θ ′(p, q) = −gdp= −
N∑

n=1

gn(pn,qn) dpn, gn(Pn, Qn) =
∫ Qn

qn

ωn(Pn, ξ)dξ.

Givenanytwo primitivesθ andθ ′, we can write (54) as

dθ(p, q)− dθ ′(P,Q) = 0,

which means thatθ(p, q)− θ ′(P,Q) is also closed and thus locally exact. Therefore,

θ(p, q)− θ ′(P,Q) = dG (55)

for some smooth functionG. In general, (55) characterizes any symplectic map (p, q)→
(P,Q) and the functionG is called thegenerating functionof the transformation [5].
Equations (55) can be solved for (P,Q) in the vicinity of the point (p, q) to obtain an explicit
local representation of the transformation. In particular, since the phase flow generated by
the equations of motion (53) is a symplectic map for any value of the time parameter, for
sufficiently smallt we can obtain an explicit representation of the flow in local coordinates
P,Q. We follow Channell and Scovel’s approach (see [8]), which uses the transformation
equations with a certain generating functionG̃ to define the approximate flow so that it
is exactly symplectic. The functioñG is specified by an asymptotic power expansion int
obtained from the equations of motion to ensure the prescribed accuracy of the method. All
of the following constructions are local, taking place in a neighborhood of some point (p, q)
where the formω is assumed nondegenerate and all functions are sufficiently smooth.

Taking the primitivesθ = fdq andθ ′ = −gdpobtained above, the transformation equa-
tions (55) become

fdq+ gdP= dG,

or in the component form

∂G

∂qn
= fn(pn, qn),

∂G

∂Pn
= gn(Pn, Qn). (56)

Note thatG is a generating function of the second kind, i.e., such that

∂2G

∂P∂q

is nondegenerate, so we can take (P, q) to be the local coordinates in the neighborhood of
(p, q). Let (P(t), Q(t)) be the solution of the system (53) with the initial data (p, q) and for
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sufficiently smallt . The right-hand side of the equations of motion

Ṗn = −Rn
∂H

∂Qn
(P, Q), Q̇n = Rn

∂H

∂Pn
(P, Q), Rn = rn(Pn, Qn) (57)

is smooth in a neighborhood of (p, q), which justifies asymptotic power expansions int for
Qn(t) at the point (p, q). Likewise, smoothness offn andgn and the relations (56) imply
the existence of a similar expansion forG(t). Thus, we have asymptotic expressions

Qn(t) = qn +
∞∑

m=1

tm

m!
Qm,n(P, q),︸ ︷︷ ︸
1qn

G(t) =
∞∑

m=0

tm

m!
Gm(P, q) (58)

holding in the vicinity of (p, q). Now we can solve forG in terms ofQn,m. To do so, write
the second part of the transformation equations as an asymptotic series int at (p, q) by
expandinggn in a Taylor series aboutq with 1q defined above:

∞∑
m=0

tm

m!
Gm(P, q) =

∞∑
k=0

1

k!

(
1qn

∂

∂qn

)k

gn(Pn, qn)

=
∞∑

k=0

1

k!

( ∞∑
s=1

ts

s!
Qs,n

∂

∂qn

)k

gn(Pn, qn).

Expanding the double series obtains an asymptotic series forgn

∞∑
k=0

1

k!

( ∞∑
s=1

ts

s!
Qs,n

∂

∂qn

)k

gn(Pn, qn)

=
∞∑

m=0

tm
m∑

k=0

∂kgn

∂qk
n

(Pn, qn)
∑

l i ,...,lk≥0∑
l i=m∑
i l i=k

1

l1! . . . lk!

(
Q1,n

1!

)l1

· · ·
(

Qm.n

s!

)lk

︸ ︷︷ ︸
gm,n

Equating powers oft yields the following relation between the coefficientsGm andQm,n

∂Gm

∂Pn
(P, q) = m!

m∑
k=0

∂kgn

∂qk
n

(Pn, qn)
∑

l i ,...,lm≥0∑
l i=k∑

i l i=m

1

l1! . . . lm!

(
Q1,n

1!

)l1

· · ·
(

Qm,n

s!

)lm

(59)

If the Qm,n were known, theGm could be easily determined by integration. TheQm,n are
calculated using the equations of motion as follows. The full-time derivative ofQn is

Q̇n = ∂Qn

∂t
+

N∑
j=1

∂Qn

∂Pj
Ṗj ,
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and using (57) it is written

∂Qn

∂t
= Rn

∂H

∂Pn
+

N∑
j=1

∂Qn

∂Pj
Rj
∂H

∂Qj
. (60)

Next we obtain asymptotic expansions forRn and the derivatives ofH in the same way as
was done forgn above

Rn =
∞∑

m=0

tmRm,n(Pn, qn),

∂H

∂Pn
=
∞∑

m=0

tmHm,Pn(p, q),
∂H

∂Qn
=
∞∑

m=0

tmHm,Qn(p, q),

with exact expressions forRm,n, Hm,Pn , andHm,Qn given in the Appendix. Upon substituting
these series into (60),Qm,n can be solved for recursively since a coupling exists among
Qm,n such that all the terms appearing on the right-hand side have lowerm-indices than
that on the left, i.e.,

Qm+1,n = m!


∑

s+k=m
s,k≥0

Rs,n Hk,Pn +
∑

s+k+l=m
s≥1, k,l≥0

1

s!

N∑
j=1

∂Qs,n

∂Pj
Rk, j Hl ,Qj

 . (61)

OnceQm,n are obtained and substituted into (59), expressions forGm are integrated and
the generating function G is specified in the form

G(P, q) =
∞∑

m=0

tm

m!
Gm(P, q).

It can be calculated to any prescribed accuracy usinganyfinite expansion

G̃(t) =
r∑

m=0

tm

m!
Gm(P, q), (62)

as long ast is sufficiently small. Thus, the truncated functionG̃(p, q) generates the trans-
formation equations

fn(p, q) = ∂G̃

∂qn
(P̃, q), gn(P̃, Q̃) = ∂G̃

∂ P̃n
(P̃, q), (63)

which can be solved for (P̃, Q̃) to define a symplectic transformation (p, q)→ (P̃, Q̃) that
agrees with the exact flow (p, q)→ (P,Q) to r -th order. We state this fact as follows:

PROPOSITION4.2. Transformation equations(63)obtained from a truncated generating
function(62)can be solved uniquely for sufficiently small t to produce(P̃, Q̃) such that

(P̃, Q̃) = (P, Q)+O(tr+1), (64)
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where(P, Q) are the solution of the transformation equations with the exact generating
function G corresponding to the Hamiltonian flow of the system(57).

The rather obvious proof of this statement is deferred to the Appendix, while we use this
result to derive a second-order symplectic discretization of the AL system.

In the case of the AL system,

fn(pn, qn) = 1

hqn
ln(1+ h2 pnqn), gn(Pn, Qn) = 1

h Pn
ln(1+ h2PnQn),

and using the well-known Taylor series for ln yields an expression of∂Gm
∂Pn

as obtained from
(59)

∂G0

∂Pn
= 1

h Pn
ln(1+ h2Pnqn),

∂Gm

∂Pn
= m!

h Pn

m∑
k=1

(−1)k−1(k− 1)!

(
h2Pn

1+ h2Pnqn

)k

(65)

×
∑

l i ,...,lm≥0∑
l i=k∑

i l i=m

1

l1! . . . lm!

(
Q1,n

1!

)l1

· · ·
(

Qm,n

s!

)lm

.

Next, using the expression for the Hamiltonian andRn = 1+ h2 Pn Qn
h along with the formulae

for their expansion coefficients found in the Appendix, we solve forQm,n with m= 1, 2 and
substitute into (64). Except form= 0, these expressions are identified as total derivatives
and trivially integrated to yield

G0(P, q) =
N∑

n=1

∫ qn 1

h Pn
ln(1+ h2Pnξ) dξ =

N∑
n=1

∫ Pn 1

hqn
ln(1+ h2ξqn) dξ,

G1(P, q) = H, G2(P, q) =
∑

j

1

h
(1+ h2Pj qj )

∂H

∂Pj

∂H

∂qj
.

Substituting the truncated generating functionG̃ = G0+ tG1+ t2

2 G2 into (63) and solving
for P̃n andQ̃n, the following second-order symplectic scheme

P̃n =
(1+ h2qn pn) exp

(− hqn
∂E
∂qn

)− 1

h2qn
, E = tG1+ t2

2
G2

(66)

Q̃n =
(1+ h2qn P̃n) exp

(
hP̃n

∂E
∂ P̃n

)− 1

h2P̃n
,

which we denote (66) by S2. Note thatG0 generates the identity transformation, and its
exact expression is not needed.

As the scheme is implicit, to advance one time step from (p, q) to (P̃, Q̃) the system (66)
has to be solved using some type of nonlinear solver. We choose to use a simple fixed-point
iteration procedure (FPI), which converges rapidly with a good initial guess given by (p, q)
for all values oft that we used in our numerical experiments.
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4.5. Standard Schemes

Standard time integrators are also used in the numerical study below for comparison with
the geometric integrators derived in the proceeding sections as well as in the implementation
of AL in canonical form. Specifically, we use the explicit second-order Runge–Kutta and
the implicit midpoint schemes defined below. Given a dynamical system

ż= F(z)

and initial dataz, we compute an approximatioñZ at the timet by the explicit second-order
Runge–Kutta scheme

Z̃ = z+ t F

(
z+ t

2
F(z)

)
(67)

and by the implicit midpoint scheme

Z̃ = z+ t F

(
1

2
(z+ Z̃)

)
. (68)

We denote (67) and (68) by R2 and CS2, respectively. The implicit midpoint rule, CS2, is
the lowest order member of the Gauss–Legendre family of implicit Runge–Kutta methods
which are symplectic schemes for canonical Hamiltonian systems [13, 21]. Thus, CS2
defines a symplectic transformation when applied to the canonical AL system. As CS2 is
implicit, we use the same nonlinear solver (FPI) as with S2 to obtainZ̃ at each time step.

5. NUMERICAL EXPERIMENTS

In this section we examine the performance of the symplectic and multisymplectic meth-
ods in solving the NLS equation under periodic boundary conditionsq(x + L , t) = q(x, t)
over the time interval [0, T ] with T = 500. For consistency, all the discretizations of the
PDE examined are second order in space and time with a fixed time step used throughout the
integration. We are interested in simulating multiphase quasi-periodic (in time) solutions.
Initial data can be obtained by perturbing the plane wave solutionq0(x, t) = ae2i |a|2t . In
the experiments, we use initial data of the form

qn(0) = p∗n(0) = 0.5(1+ ε cos(µxn)) (69)

for xn=−L/2+ (n− 1)h, h = L/N, n = 1, 2, . . . , N + 1, whereε = 10−2, µ = 2π/L
and L is either (69a)L = 2

√
2π or (69b) L = 4

√
2π . The plane wave solution is mod-

ulationally unstable and for a fixed amplitude, as the period L is increased, the number
of unstable modes increases. Thus, initial data (69a) and (69b) correspond to multiphase
solutions, near the plane wave, which are characterized by either one or two excited modes,
respectively. For brevity, we will refer to these cases as the one-mode and two-mode case.
In almost all the experiments initial data (69a) is used. It is only in the final comparison
between the generating function symplectic scheme and the multisymplectic scheme that
we consider initial data (69b).
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5.1. The Noncanonical AL System: Symplectic Versus Nonsymplectic Integrators

We begin by comparing the performance of the generating function symplectic scheme S2
(66) and the explicit Runge–Kutta scheme R2 (67), applied to the noncanonical AL system
(37) for the one-mode case (69a). The numerical schemes are evaluated by monitoring the
HamiltonianH (39), the normI defined as

I (p, q) =
N∑

n=1

[ pn(qn−1+ qn+1)], (70)

as well as the amplitude of the waveform of the solution.
Figures 1a and 1b show the error in the Hamiltonian obtained using S2 and R2 for

(a) N = 4 with t = 10−2 and for (b)N = 32 with t = 10−3. The symplectic scheme S2
preserves the Hamiltonian extremely well during long time integrations as the error in the
Hamiltonian oscillates in a bounded fashion and does not exhibit a linear drift as it does with
R2. However, the linear error growth in H which occurs using the nonsymplectic method
becomes less significant as the time stept decreases and the dimension of the system N
increases (compare Figs. 1a and 1b).

This behavior is summarized in Table I which provides the maximum error inH of the AL
system as a function of N and t using schemes S2 and R2, i.e., for mesh sizesN = 4, 16, 32,

FIG. 1. Comparison of integrators S2 and R2 for the noncanonical AL system: (a) error in the Hamiltonian
for N = 4 with t = 10−2, (b) error in the Hamiltonian forN = 32 with t = 10−3, (c) Amplitude ofq1 for N = 16
with t = 10−2, (d) Conjugacy deviation|p1 − q∗1| for N = 16 with t = 10−3.
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TABLE I

Maximum Absolute Error in the AL Hamiltonian Obtained with S2

and R2 for T = 500

N 4 4 16 16 32 32 64 64
t 1.0E-02 1.0E-03 1.0E-02 1.0E-03 1.0E-03 1.0E-04 5.0E-04 1.0E-04

S2 7.1E-06 7.1E-08 2.7E-04 2.7E-06 3.7E-06 5.1E-08 1.0E-06 1.0E-07
R2 1.3E-05 3.5E-08 2.2E-04 5.2E-07 6.0E-07 4.1E-09 1.2E-07 4.1E-09

and 64, each for two time steps. The preservation of the second invariantI is not presented
as it is qualitatively similar toH . The experiments with different time stepst indicate that
the error in the Hamiltonian is bounded byγS2t2 for the method S2, whereas it behaves like
αR2t

2+ βR2T t3 for the method R2. The dependence of the constantsγS2, αR2, andβR2 on
the space discretization parameterh is less clear (see Table I).

Figure 1c shows the amplitude ofq1 of the solution obtained with the two integrators
R2 and S2 usingN = 16 andt = 10−2. Solutions of the AL system exhibit regular quasi-
periodic motion because of the fact that the AL flow occurs in general on anN-torus. For
t = 0.01, a phase lag develops using R2 which becomes more pronounced as the system
evolves. However, usingt = 0.001 the solutions from the two integrators are virtually
indistinguishable on the time scale examined. The amplitudes of the other lattice sites show
similar qualitative behavior.

The conjugacy relationq = p∗ arises in the applications of the NLS of physical interest
[9, 25], thus preserving this additional constraint can potentially be as important as pre-
serving the symplectic structure. It is of interest then to consider initial data of this form
and to determine which of the schemes minimizes|p− q∗|, the deviation from conjugacy.
Figure 1d shows that the deviation in|p1− q∗1 | for N = 16 andt = 10−3 is of size 10−6

using S2, whereas with R2 it is on the order of roundoff (the deviation in|pn − q∗n | is
comparable for general n). Note: Althoughq(0) = p∗(0) and the semidiscrete AL flow
preserves conjugacy, this condition is not imposed throughout the time evolution as the
performance of the integrator degrades. In fact, if the relation is imposed and the implicit
scheme is solved for justqn at each time step, a linear error growth in the Hamiltonian
occurs indicating that in this case the scheme is not symplectic [22].

Both schemes exhibit stability issues as can be seen from theN = 4 andN = 16 cases.
Keeping the time step fixed and varyingN (equivalently h), as h decreases the performance
of both schemes degrades. This suggests thatt/h2 < M , for someM , is required for
stability. The instability is more pronounced for the explicit scheme R2 than for either of
the symplectic schemes. It is surprising then that R2 preserves conjugacy better, indicating
that instabilities of R2 lie in thep = q∗ subspace, whereas for S2 they are transverse to it.

It should be mentioned that R2, being an explicit scheme, is faster than S2 and the
difference in computation time becomes more significant as the dimension 2N of the semi-
discrete system is increased. At the same time, the difference in accuracy of the two schemes
manifests on a longer time scale, makingR2 attractive for intermediate integration times.

5.2. The Symplectic Integrators in Noncanonical and Canonical Form

Next we compare the performance of the leapfrog method LF (50), the symplectic canon-
ical implicit midpoint scheme CS2 (68) and the generating function symplectic scheme S2
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FIG. 2. The error in the Hamiltonian, forT = 500, obtained with (a) the LF integrator usingN = 32,t = 10−4

and (b) the canonical AL integrator usingN = 32, t = 10−3.

(66) for the one-mode case (69a). Initialization and comparison of the constants of motion
and waveform for the various integration methods is done in the original coordinate system
(p, q), i.e., we unwind all transformations before the AL Hamiltonian (39) is computed and
output is generated. For the implicit schemes, the same criterion is used to accept a solution
of the iterative procedure at each time step, namely, theL1-norm of the error has to be less
than 10−10.

Both LF and CS2 exhibit the characteristic behavior of symplectic schemes. As an ex-
ample, Fig. 2 shows the error in the Hamiltonian, which is nicely bounded over long times
obtained with (a) LF usingN = 32, t = 10−4 and (b) CS2 usingN = 32, t = 10−3, both
for T = 500. Table II provides the maximum absolute error in the AL Hamiltonian (39)
obtained with the symplectic schemes CS2, S2, and LF for mesh sizesN = 32 and 64, each
for two time steps. For fixed h(h = L/N), halving the time step results in a decrease in the
maximum error in H by a factor of 2−2. An example of this is shown in the table forN = 32.
This supports the conjecture that for the LF and CS2 methods, the error in H is bounded by
γLFt2 andγCS2t2, respectively, similar to the results for S2. However, the maximum error in
H obtained with LF and CS2 is at least two orders of magnitude larger than with S2. Thus,
the error coefficientsγLF, γCS2 are significantly larger thanγS2. In Fig. 2a, small amplitude,
high-frequency background oscillations are visible against the dominant large amplitude,
low-frequency oscillations (whose frequency corresponds to that of the excited mode in the
AL solution). The time-dependent mapu 7→ w is responsible for the high-frequency oscil-
lations as well as the less accurate resolution of the Hamiltonian exhibited by LF and CS2.

TABLE II

Maximum Absolute Error in the AL Hamiltonian Obtained Using

the Symplectic Schemes CS2, S2, and LF forT = 500

N 32 32 64 64
t 2.0E-03 1.0E-03 5.0E-04 1.0E-04

CS2 1.2E-03 3.0E-04 1.0E-03 4.5E-05
S2 1.5E-05 3.7E-06 1.0E-06 1.0E-07
LF 1.3E-03 3.2E-04 1.6E-03 6.4E-05
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In the experiments, CS2 was found to be less efficient than S2 as it requires almost as
much CPU time as S2 even though it is less accurate. On the other hand, LF is relatively
fast and easy to implement but is also less accurate than S2. In addition, the method is based
on a particular feature of (44)—its separable nature, which is not apparent from the original
AL formulation, nor general enough. Although there is no loss of conjugacy when using LF
and CS2, we emphasize the utility of the generating function method for its ability to handle
a wide class of noncanonical Hamiltonian systems. To obtain a robust symplectic integrator
which preservespn = q∗n exactly, the conjugacy condition should be imposed first. Then
lettingqn = an + ibn, the AL system can be written in real form and the generating function
method developed in Section 4 applied to the real noncanonical system.

5.3. The Multisymplectic Integrator

Lastly, we consider the multisymplectic scheme MS. As before, we use initial conditions
(69a) and examine the performance of the scheme for different mesh sizes and time steps
(see Table III). The multisymplectic discretization (27) is implicit and can be solved using
iteration schemes. All the local conservation laws are of the general form

∂t T + ∂x F = 0, (71)

and multiplying the discrete conservation laws (29)–(31) by1x1t , they can be written as(
T j+1

i+1/2− T j
i+1/2

)
1x + (F j+1/2

i+1 − F j+1/2
i

)
1t = 0. (72)

In addition to the local energy and momentum conservation laws, we monitor the error in
the global invariantsE(t), I(t), andN (t). Once the local conservation laws (29)–(31) have
been evaluated, we obtain a second-order approximation to the global conserved quantities
by implementing (72) and summing in space and time.

Figure 3 provides the results obtained using MS for initial data (69a), withN = 64
andt = 5× 10−3 over the time interval [0, 500]. For clarity, in the surface plots we only
show the time slice [450, 500]. The surface of the one mode multiphase solution (Fig. 3a)
displays quasiperiodic behavior in time. Figures 3b and 3c show the errors in the local
energy and momentum conservation laws as given by (29)–(31). The errors in the local
conservation laws are concentrated in the regions of the multiphase solution where there
are steep gradients. The corresponding error in the global energy and momentum over
the time interval [0, 500] are given in Figs. 3d and 3e. It is worth noting that the global
momentum and norm (not shown) are conservedexactly(up to the error criterion of 10−14

in the iteration procedure in the implicit MS scheme) since they are quadratic invariants!
Clearly, this is a very attractive feature of the MS scheme. Further, the error in the global
energy oscillates in a bounded fashion as is typical of the behavior of a symplectic integrator
(recall Proposition 1, where MS is shown to be symplectic).

The maximum error in the local energy and momentum and global energy and momentum
for the multisymplectic scheme are provided in Table III for mesh sizesN = 32 and 64,
each for three time steps. From the experiments it is readily seen that the error in the local
energy conservation law (29) depends only on the time stept and that the the error is second
order int (successively halving the time step decreases the LE error each time by a factor
of 2−2). In contrast, the error in the local momentum conservation law (31) depends only
on the spatial mesh sizeN and, as anticipated, the error in LM is second order in h.



NONLINEAR SCHRÖDINGER EQUATION 139

TABLE III

The Absolute Maximum Error in the Local Energy and Momentum and the Global Energy

and Momentum Obtained Using the Multisymplectic Scheme MS, withT = 500

N 32 32 32 64 64 64
t 2.0E-02 1.0E-02 5.E-03 2.0E-02 1.0E-02 5.0E-03

LE 6.0E-05 1.5E-05 4.0E-06 8.0E-05 2.0E-05 5.0E-06
LM 1.7E-02 1.7E-02 1.7E-02 4.8E-03 4.8E-03 4.8E-03
GE 7.3E-05 2.0E-05 5.0E-06 7.6E-05 2.2E-05 5.0E-06
GM 1.2E-13 2.5E-14 2.0E-13 1.3E-13 1.0E-13 4.5E-13

FIG. 3. The multisymplectic scheme MS withN = 64 andt = 5× 10−3, T = 500: (a) surface, (b–c) error in
the local energy and momentum conservation law, respectively, (d–e) error in the global energy and momentum,
respectively.
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The approximation to the global energy, GE, obtained using the MS scheme and the
Hamiltonian for the AL system both provide a second-order approximation to the NLS
Hamiltonian. In comparing the error in the GE in Table III with the errors in the Hamiltonian
in Tables I and II we see that the multisymplectic scheme preserves the global energy better
than both S2 and CS2. So in addition to having very good resolution of the local conservation
laws, the multisymplectic scheme preserves the global energy extremely well (and the global
momentum and norm exactly!). Another important feature of the MS method is that it is
significantly faster than the symplectic schemes S2 and CS2.

A final issue to consider is the preservation of the qualitative properties of the solution.
Since to consider S2 to be the most robust of the symplectic integrators for the AL system,
we compare the performance of MS with that of S2. As mentioned before, the surface of the
waveform obtained using MS for initial data (69a) with discretization parametersN = 64,
t = 5× 10−3 is given in Fig. 3a for the time frame 450< t < 500. Implementing S2 with
the same discretization parameters and for the same initial data, the surface of the waveform
appears identical to Fig. 3a. This is initial data for a stable multiphase solution of NLS and,
although “near” the unstable plane wave solution, it is not “too close” (as measured in
spectral space; see [3]). It is expected that when simulating other stable solutions of NLS,
e.g., solitons (which are actually a limiting case of the multiphase solutions with L→∞),
the MS and S2 schemes will comparably preserve the qualitative features of the waveform.
However, when examining more complex solutions there can be a striking difference in the

FIG. 4. The two mode multiphase solution withN = 64,t = 5× 10−3 andT = 500: (a–b) the surface of the
waveform obtained using the S2 and the MS discretization, respectively and (c–d) the error in the global energy
obtained using the S2 and the MS discretization, respectively, for initial data (69b).
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S2 and MS results. In highly sensitive regimes, where the proximity to unstable solutions
and numerically induced chaos is an important computational issue, the integrability of the
AL discretization beomes crucial. Figure 4 shows (a-b) the surface of the waveform and (c-d)
the error in the global energy obtained using the S2 and the MS discretization, respectively,
for initial data (69b) with discretization parametersN = 64, t = 5× 10−3, andT = 500.
Notice that the AL based S2 scheme accurately captures the quasiperiodic motion. On
the other hand, using the MS integrator, the onset of numerically induced temporal chaos
is observed. A random switching in time of the location of the spatial excitations in the
waveform is clearly visible, even though MS preserves the global energy better than AL
(see Figs. 4c and 4d). As a consequence, for sensitive regimes, the significant improvement
in the qualitative features of the waveform obtained with the integrable AL-S2 scheme
justifies the computational expense. The advantages of the MS scheme are as follows—
when considering nonsensitive regimes such as the one-mode multiphase solution, it is
faster, there is no loss of conjugacy, it handles a wide range of mesh size and it preserves
the local conservation laws and global invariants as well or better than S2.

6. CONCLUSIONS

In this paper we have analyzed and developed various geometric integrators for the NLS
system. The numerical experiments indicate that when compared to traditional integrators,
represented by a Runge–Kutta method R2, geometric schemes are generally more efficient
in preservation of geometric features of the system, such as local and global conserved
quantities (actions), quasiperiodic character of the motion and qualitative features of the
waveform. At the same time, geometric integrators typically result in highly nonlinear
implicit schemes that are slower than the more straightforward explicit R2. In addition,
various relative advantages of some geometric integrators become less pronounced as the
values of discretization parametersh andt tend to zero, approximating the PDE, while their
relative run-time performance degrades further. In this regard, the multisymplectic scheme
is an exception since its accuracy improves as the PDE limit is approached and the run-time
performance does not suffer substantially.

It is important to emphasize that geometric integrators do reproduce several qualitative
features of NLS better than R2. In particular, they preserve the action values much better
as the deviations in the integrals from the initial values stay bounded, while R2 produces
essentially linear drifts. The implications are that for very long time simulations, important
for statistical studies of the NLS system and its perturbations, geometric integrators provide
an effective tool. Indeed, averaged quantities obtained with such schemes are much more
likely to reflect those of the original system than the statistics obtained with R2 because
of uncompensated mean drifts. In this situation, the extra cost associated with geometric
schemes is well worth the result.

Among the geometric schemes, performance varied for different parameter values and
initial data. The multisymplectic scheme seems to be the best in terms of run-time perfor-
mance and the quality of preservation of the local and global integrals of motion. At the same
time, using initial data for the two mode multiphase solutions of NLS, MS fails to capture
the proper PDE waveform despite excellent integral preservation. In contrast, symplectic
schemes for the AL system never preserve integrals to the same degree but faithfully repro-
duce the qualitative features of the wave profile and the quasiperiodic character of the motion.
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To obtain symplectic integrators for the integrable semi-discretization of NLS, the AL
system, we extended the canonical procedure based on generating functions to a fairly
wide class of noncanonical systems carrying a symplectic structure of the AL type and
potentially a much wider class of systems. The integrators derived from this generating
function technique appear to be very robust and provide a rather general tool for nonlinear
Hamiltonian systems. This is in contrast with methods based on vector field splitting which
appear less general in this setting.

In summary, geometric integrators provide an “expensive” but valuable tool for studies
of long time behavior of nonlinear PDEs, and different schemes are preferred in different
parameter regimes and for different initial data. The approach to construction of such
integrators via generating functions appears to be fairly general and robust. The newly
emerging class of multisymplectic integrators for nonlinear wave equations also proved
extremely promising, although limits of applicability of this method are still to be precisely
determined, as it includes simple and fast schemes with remarkable conservation properties
for local as well as global invariants.

APPENDIX I: PROOF OF PROPOSITION 1

PROPOSITIONA.1. Let (14) be discretized in space and in time by a pair of Gauss–
Legendre collocation methods with s and r stages, respectively. The resulting discretization
is a multisymplectic integrator for the NLS equation. Further, when periodic boundary
conditions are imposed the discretization yields a finite dimensional Hamiltonian truncation
of the NLS equation in space with the underlying symplectic structure da∧ Bdb and a
symplect́ic discretization of this finite-dimensional system in time.

As in [20], we begin by discretizing in space and apply an implicit s-stage Runge–
Kutta scheme to the multisymplectic formulation of NLS (14) to obtain the spatial semi-
discretization,

Ai = ak +1x
s∑

j=1

ãi j Vj ,

Vi = vk +1x
s∑

j=1

ãi j
(−∂t Bj − 2

(
A2

j + B2
j

)
Aj
)
,

Bi = bk +1x
s∑

j=1

ãi j Wj ,

(A.1)

Wi = wk +1x
s∑

j=1

ãi j
(
∂t Aj − 2

(
A2

j + B2
j

)
Bj
)
,

ak+1 = ak +1x
s∑

j=1

b̃j Vj ,

vk+1 = vk +1x
s∑

j=1

b̃j (−∂t Bj − 2(A2+ B2)A),
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bk+1 = bk +1x
s∑

j=1

b̃j Wj ,

wk+1 = wk +1x
s∑

j=1

b̃j (∂t Aj − 2(A2+ B2)B),

which is defined for all t. The standard notationuk(t) ≈ u(xk, t) is employed, and for
convenience we setk = 0 and assume thatxk = 0. The corresponding semi-discretization
of conservation law (15) is given by

[da1 ∧ dv1− da0 ∧ dv0] + [db1 ∧ dw1− db0 ∧ dw0] +
s∑

i=1

b̃i ∂t [dAi ∧ dBi ]1x = 0.

(A.2)

Solving the first four equations of (A.1) for∂t Aj , ∂t Bj , j = 1, . . . , s,we next implement
an r-stage Runge–Kutta discretization in time

Ai,m = a0
i +1t

r∑
n=1

˜̃amn∂t Ai,n, Bi,m = b0
i +1t

r∑
n=1

˜̃amn∂t Bi,n,

(A.3)

a1
i = a0

i +1t
r∑

n=1

˜̃bm∂t Ai,m, b1
i = b0

i +1t
r∑

n=1

˜̃bm∂t Bi,m,

with the corresponding conservation property

[
da1

i ∧ db1
i − da0

i ∧ db0
i

]− r∑
m=1

˜̃bm[∂tdAi,m ∧ dBi,m + dAi,m ∧ ∂tdBi,m]1t = 0. (A.4)

Combining (A.1) and (A.3), the discretized multisymplectic conservation law is given
by

s∑
i=1

b̃i
[
da1

i ∧ db1
i − da0

i ∧ db0
i

]
1x +

r∑
m=1

˜̃bm
[
dam

1 ∧ dvm
1 − dam

0 ∧ dvm
0

+ dbm
1 ∧ dwm

1 − dbm
0 ∧ dwm

0

]
1t = 0, (A.5)

which is a discretization of (15) integrated over the domain [0,1x] × [0,1t ]. This estab-
lishes that the concatenated G–L integrator is multisymplectic.

To examine a global property such as symplecticity, sum over thek lattice points:

M∑
k=1

(
s∑

i=1

b̄i
[
da1

i,k ∧ db1
i,k − da0

i,k ∧ db0
i,k

]
1x +

r∑
m=1

˜̃bm
[
dam

k+1 ∧ dvm
k+1− dam

k ∧ dvm
k

+ dbm
k+1 ∧ dwm

k+1− dbm
k ∧ dwm

k

]
1t

)
= 0. (A.6)
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Expanding the outer sum and noting that for periodic boundary conditionsam
M+1 = am

1 and
vm

M+1 = vm
1 , we find

M∑
k=1

r∑
m=1

˜̃bm
[
dam

k+1 ∧ dvm
k+1− dam

k ∧ dvm
k

]
1t

=
r∑

m=1

˜̃bm
[
dam

M+1 ∧ dvm
M+1− dam

1 ∧ dvm
1

]
1t = 0. (A.7)

Similarly,

M∑
k=1

r∑
m=1

˜̃bm
[
dbm

k+1 ∧ dwm
k+1− dbm

k ∧ dwm
k

]
1t = 0.

Therefore,

M∑
k=1

s∑
i=1

b̃i
[
da1

i,k ∧ db1
i,k

] = M∑
k=1

s∑
i=1

b̃i
[
da0

i,k ∧ db0
i,k

]
. (A.8)

This is conservation of symplecticity in time with respect to the state variablesa = {ai,k}
andb = {bi,k} and the wedge productda ∧ B̃db, whereB̃ is a diagonal matrix with entries
{b̄i }.

APPENDIX 2. FORMULAE FOR THE NONCANONICAL SYMPLECTIC INTEGRATOR

SubstitutingQ = q+1q allows the derivatives ofH and Rn to be expanded in power
series int with all coefficients evaluated at (P, q) the same way it was done forgn in the text.

∂H

∂Pn
(P,Q) =

∞∑
k=0

1

k!

(
1q

∂

∂q

)k
∂H

∂Pn
(P, q),

where formally

∞∑
k=0

1

k!

(
1q

∂

∂q

)k

= exp

(
1q

∂

∂q

)
is the shift operatorq→ q+1q that generates its Taylor expansion for any smooth function
of q. Here

1q
∂

∂q
≡

N∑
j=1

1qj
∂

∂qj
,

so that (
1q

∂

∂q

)k
∂H

∂Pn
(p, q) =

N∑
j1,..., jk=1

∂k+1H

∂Pn∂qj1 . . . ∂qjk

1qj1 . . . 1 jk

=
N∑

j1,..., jk=1

∂k+1H

∂Pn∂qj1 . . . ∂qjk

( ∞∑
s=1

ts

s!
Qs, j1

)
· · ·
( ∞∑

s=1

ts

s!
Qs, jk

)
.
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With this notation we obtain

∂H

∂Pn
=
∞∑

s=0

ts
s∑

k=0

N∑
j1,..., jk=1

∂k+1H

∂Pn∂qj1 . . . ∂qjk

∑
l i ,...,ls≥0∑

l i=k∑
i l i=s

1

l1! . . . ls!

(
Q1, j1

1!

)l1

· · ·
(

Qs, jk

s!

)ls

.

︸ ︷︷ ︸
Hs,Pn

(A.9)

Likewise,

∂H

∂Qn
=
∞∑

s=0

ts
s∑

k=0

N∑
j1..., jk=1

∂k+1H

∂qn∂qj1 . . . ∂qjk

∑
l i ,...,ls≥0∑

l i=k∑
i l i=s

1

l1! . . . ls!

(
Q1, j1

1!

)l1

· · ·
(

Qs, jk

s!

)ls

,

︸ ︷︷ ︸
Hs,Qn

(A.10)

and

Rn(Pn, Qn) =
∞∑

m=0

tm
m∑

k=0

∂k Rn

∂Qk
n

(Pn, qn)
∑

l i ,...,lk≥0∑
l i=m∑
i l i=k

1

l1! . . . lk!

(
Q1,n

1!

)l1

· · ·
(

Qm,n

s!

)lk

,

︸ ︷︷ ︸
Rm,n

(A.11)

In the case of the AL systemRn(Pn, Qn) = 1
h (1+ h2PnQn) so that

Rn(Pn, Qn) = 1+ h2Pnqn

h︸ ︷︷ ︸
R0,n

+
∞∑

s=1

ts 1

s!
h PnQs,n︸ ︷︷ ︸

Rs,n

. (A.12)

APPENDIX 3. PROOF OF PROPOSITION 2

PROPOSITIONA.2. Consider the Taylor series expansions for the generating function G
of the phase flow of the system(57)and its r-th order truncationG̃

G(t) =
∞∑

m=0

tm

m!
Gm(P, q), G̃(t) =

r∑
m=0

tm

m!
Gm(P, q).

Upon substitution into the transformation equations(56) two systems are obtained

∂G

∂qn
(P, q) = fn(pn, qn),

∂G

∂Pn
(P, q) = gn(Pn, Qn) (A.13)
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and

∂G̃

∂qn
(P̃, q) = fn(pn, qn),

∂G̃

∂ P̃n
(P̃, q) = gn(P̃n, Q̃n), (A.14)

with respective solutions(P,Q)and ˜(P, Q̃). Then, (A.13)and(A.14)can be solved uniquely
for sufficiently small t so that

(P̃, Q̃) = (P, Q)+O(tr+t ). (A.15)

Proof. Observe that̃G(t) = G(t)+O(tr+1) and therefore

fn(pn, qn) = ∂G

∂qn
(P̃, q)+O(tr+1)

gn(P̃n, Q̃n) = ∂G

∂Pn
(P̃, q)+O(tr+1). (A.16)

From the second equation of (A.13) we calculate the derivative matrix

J1(t) = ∂2G

∂P∂q
=
(

∂2G

∂Pn∂qm

)
=
 N∑

j=1

∂gn

∂Qj

∂Qj

∂qm

.
Using the expansionQ = q+O(t) to calculate∂Q

∂q and settingt = 0 yields

J1
n,m(0) =

N∑
j=1

∂gn

∂Qj
(P, Q)δ j,m = ∂gn

∂qm
(p, q) = δm,nωn(pn, qn).

Sinceω is nondegenerate at (p, q) by assumption,J1(t) is nonsingular fort = 0 and for
sufficiently small nonzerot the same holds by continuity. SincẽG(t) = G(t)+O(tr+1),

J̃1 = ∂2G

∂P̃∂q

is nonsingular for smallt as well. Taking the smaller of the two values fort , we ensure
that the first equtions of both systems (A.13) and (A.14) are solvable forP. (Incidentally,
this argument establishes thatG andG̃ obtained by the technique in Section 4 are indeed
generating functions of the second kind.) Next, we substitute the obtainedP andP̃ into the
second equations of (A.13) and (A.14) and solve forQ andQ̃, respectively. This is possible
since the appropriate Jacobi matrix is

J2(t) =
(
∂gn

∂Qm
(P, Q)

)
= (δm,nωn(Pn, Qn)),

and it is nondenerate for the chosen values oft by construction.
Having obtained (P, Q) and (̃P, Q̃) we compare their Taylor expansions att = 0. For

that we differentiate equations (A.13) and (A.14) with respect tot to k-th order and solve
for

dk

dtk
(P, Q)|t=0 and

dk

dtk
(P̃, Q̃)

∣∣
t=0,
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respectively. By virtue of (A.15), upon settingt = 0 the differentiated equations reduce to
the same system as long ask ≤ r , and by nondegeneracy ofJ1(0) andJ2(0) the solution is
unique so that

dk

dtk
(P, Q)|t=0 = dk

dtk
(P̃, Q̃)|t=0, k = 0, . . . , r

and therefore

(P, Q) = (P̃, Q̃)+O(tr+1)

for all t as determined above.
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